90 research outputs found

    A system for online beam emittance measurements and proton beam characterization

    Full text link
    A system for online measurement of the transverse beam emittance was developed. It is named 4^{4}PrOBε\varepsilonaM (4-Profiler Online Beam Emittance Measurement) and was conceived to measure the emittance in a fast and efficient way using the multiple beam profiler method. The core of the system is constituted by four consecutive UniBEaM profilers, which are based on silica fibers passing across the beam. The 4^{4}PrOBε\varepsilonaM system was deployed for characterization studies of the 18~MeV proton beam produced by the IBA Cyclone 18 MeV cyclotron at Bern University Hospital (Inselspital). The machine serves daily radioisotope production and multi-disciplinary research, which is carried out with a specifically conceived Beam Transport Line (BTL). The transverse RMS beam emittance of the cyclotron was measured as a function of several machine parameters, such as the magnetic field, RF peak voltage, and azimuthal angle of the stripper. The beam emittance was also measured using the method based on the quadrupole strength variation. The results obtained with both techniques were compared and a good agreement was found. In order to characterize the longitudinal dynamics, the proton energy distribution was measured. For this purpose, a method was developed based on aluminum absorbers of different thicknesses, a UniBEaM detector, and a Faraday cup. The results were an input for a simulation of the BTL developed in the MAD-X software. This tool allows machine parameters to be tuned online and the beam characteristics to be optimized for specific applications.Comment: published in Journal of Instrumentatio

    Study of the radioactivity induced in air by a 15-MeV proton beam

    Get PDF
    Radioactivity induced by a 15-MeV proton beam extracted into air was studied at the beam transport line of the 18-MeV cyclotron at the Bern University Hospital (Inselspital). The produced radioactivity was calculated and measured by means of proportional counters located at the main exhaust of the laboratory. These devices were designed for precise assessment of air contamination for radiation protection purposes. The main produced isotopes were 11C, 13N and 14O. Both measurements and calculations correspond to two different irradiation conditions. In the former, protons were allowed to travel for their full range in air. In the latter, they were stopped at the distance of 1.5 m by a beam dump. Radioactivity was measured continuously in the exhausted air starting from 2 min after the end of irradiation. For this reason, the short-lived 14O isotope gave a negligible contribution to the measured activity. Good agreement was found between the measurements and the calculations within the estimated uncertainties. Currents in the range of 120-370 nA were extracted in air for 10-30 s producing activities of 9-22 MBq of 11C and 13N. The total activities for 11C and 13N per beam current and irradiation time for the former and the latter irradiation conditions were measured to be (3.60 ± 0.48) × 10−3 MBq (nA s)−1 and (2.89 ± 0.37) × 10−3 MBq (nA s)−1, respectivel

    Inflationary cosmology with scalar field and radiation

    Get PDF
    We present a simple, exact and self-consistent cosmology with a phenomenological model of quantum creation of radiation due to decay of the scalar field. The decay drives a non-isentropic inflationary epoch, which exits smoothly to the radiation era, without reheating. The initial vacuum for radiation is a regular Minkowski vacuum. The created radiation obeys standard thermodynamic laws, and the total entropy produced is consistent with the accepted value. We analyze the difference between the present model and a model with decaying cosmological constant previously considered.Comment: 13 pages Latex; to appear Gen. Rel. Gra

    Temperature dependences of surface magnetoelastic constants of ultrathin Fe/GaAs (001) films

    No full text
    The magnetoelastic constants of epitaxial iron films prepared by dc magnetron sputtering on single crystal GaAs (001) substrate in argon atmosphere and covered with a protective Si layer have been investigated in the temperature range 10–300 K by means of the strain modulated ferromagnetic resonance. It has been shown that the magnetoelastic constants strongly depend on the thickness of the film. The surface components of the magnetoelastic constants have been determined and analyzed within the Néel and dipolar models. The proposed analysis of experimental data gives chance for deeper insight into mechanisms responsible for magnetostriction of iron thin films

    Campylobacter jejuni dsb gene expression is regulated by iron in a Fur-dependent manner and by a translational coupling mechanism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many bacterial extracytoplasmic proteins are stabilized by intramolecular disulfide bridges that are formed post-translationally between their cysteine residues. This protein modification plays an important role in bacterial pathogenesis, and is facilitated by the Dsb (disulfide bond) family of the redox proteins. These proteins function in two parallel pathways in the periplasmic space: an oxidation pathway and an isomerization pathway. The Dsb oxidative pathway in <it>Campylobacter jejuni </it>is more complex than the one in the laboratory <it>E. coli </it>K-12 strain.</p> <p>Results</p> <p>In the <it>C. jejuni </it>81-176 genome, the <it>dsb </it>genes of the oxidative pathway are arranged in three transcriptional units: <it>dsbA2</it>-<it>dsbB</it>-<it>astA, dsbA1 </it>and <it>dba</it>-<it>dsbI</it>. Their transcription responds to an environmental stimulus - iron availability - and is regulated in a Fur-dependent manner. Fur involvement in <it>dsb </it>gene regulation was proven by a reporter gene study in a <it>C. jejuni </it>wild type strain and its isogenic <it>fur </it>mutant. An electrophoretic mobility shift assay (EMSA) confirmed that analyzed genes are members of the Fur regulon but each of them is regulated by a disparate mechanism, and both the iron-free and the iron-complexed Fur are able to bind <it>in vitro </it>to the <it>C. jejuni </it>promoter regions. This study led to identification of a new iron- and Fur-regulated promoter that drives <it>dsbA1 </it>gene expression in an indirect way. Moreover, the present work documents that synthesis of DsbI oxidoreductase is controlled by the mechanism of translational coupling. The importance of a secondary <it>dba-dsbI </it>mRNA structure for <it>dsbI </it>mRNA translation was verified by estimating individual <it>dsbI </it>gene expression from its own promoter.</p> <p>Conclusions</p> <p>The present work shows that iron concentration is a significant factor in <it>dsb </it>gene transcription. These results support the concept that iron concentration - also through its influence on <it>dsb </it>gene expression - might control the abundance of extracytoplasmic proteins during different stages of infection. Our work further shows that synthesis of the DsbI membrane oxidoreductase is controlled by a translational coupling mechanism. The <it>dba </it>expression is not only essential for the translation of the downstream <it>dsbI </it>gene, but also Dba protein that is produced might regulate the activity and/or stability of DsbI.</p

    Particle creation, renormalizability conditions and the mass-energy spectrum in gravity theories of quadratic Lagrangians

    Get PDF
    Massive scalar particle production, due to the anisotropic evolution of a five-dimensional spacetime, is considered in the context of a quadratic Lagrangian theory of gravity. Those particles, corresponding to field modes with non-vanishing momentum component along the fifth dimension, are created mostly in the neighbourhood of a singular epoch where only their high-frequency behaviour is of considerable importance. At the 1-loop approximation level, general renormalizability conditions on the physical quantities relevant to particle production are derived and discussed. Exact solutions of the resulting Klein-Gordon field equation are obtained and the mass-energy spectrum attributed to the scalar field due to the cosmological evolution is being investigated further. Finally, analytic expressions regarding the number and the energy density of the created particles at late times, are also derived and discussed.Comment: LaTeX file, 23 page

    Ultra-high dose rate dosimetry for pre-clinical experiments with mm-small proton fields.

    Get PDF
    PURPOSE To characterize an experimental setup for ultra-high dose rate (UHDR) proton irradiations, and to address the challenges of dosimetry in millimetre-small pencil proton beams. METHODS At the PSI Gantry 1, high-energy transmission pencil beams can be delivered to biological samples and detectors up to a maximum local dose rate of ∼9000 Gy/s. In the presented setup, a Faraday cup is used to measure the delivered number of protons up to ultra-high dose rates. The response of transmission ion-chambers, as well as of different field detectors, was characterized over a wide range of dose rates using the Faraday cup as reference. RESULTS The reproducibility of the delivered proton charge was better than 1 % in the proposed experimental setup. EBT3 films, Al2O3:C optically stimulated luminescence detectors and a PTW microDiamond were used to validate the predicted dose. Transmission ionization chambers showed significant volume ion-recombination (>30 % in the tested conditions) which can be parametrized as a function of the maximum proton current density. Over the considered range, EBT3 films, inorganic scintillator-based screens and the PTW microDiamond were demonstrated to be dose rate independent within ±3 %, ±1.8 % and ±1 %, respectively. CONCLUSIONS Faraday cups are versatile dosimetry instruments that can be used for dose estimation, field detector characterization and on-line dose verification for pre-clinical experiments in UHDR proton pencil beams. Among the tested detectors, the commercial PTW microDiamond was found to be a suitable option to measure real time the dosimetric properties of narrow pencil proton beams for dose rates up to 2.2 kGy/s

    Achalasia and associated esophageal cancer risk: What lessons can we learn from the molecular analysis of Barrett's–associated adenocarcinoma?

    Get PDF
    Idiopathic achalasia and Barrett's esophagus (BE) are preneoplastic conditions of the esophagus. BE increases the risk of esophageal adenocarcinoma (
    corecore